
CS3485
Deep Learning for Computer Vision

Lec 5: Pytorch I – MLPs

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

PyTorch

■ After we learned all this previous theory on Deep Learning, it is finally time to
implement it and solve real problem.

■ To that goal, we’ll use a Python library called PyTorch, which provides many more
features, and it is much more optimized for Deep Learning development than
Scikit-learn, which we used previously.

■ Created in 2016 by Facebook, PyTorch has become the de facto library for DL in many
industries and most of the Artificial Intelligence research is done with it nowadays.

■ The main data structure used in PyTorch is a tensor, which is a generalization of vectors
and matrices:

■ We can create tensors / arrays of more dimensions (4, 5, …) following the same principle.

Tensors

Scalar

axis 0

a
x
i
s

0

axis 1
axis 1

a
x
i
s

0

axis 2

Vector / 1D array Matrix / 2D array Tensor / 3D array

Shape: () Shape: (7,) Shape: (5,7) Shape: (5,3,7)

Initializing a tensor

■ We initialize a tensor by calling torch.tensor() on a list of numerical elements:

■ Just like in Numpy, we can access the tensors’ shapes and data types:

■ The data type of all elements within a tensor is the same! If a tensor contains data of
different data types, entire tensor is coerced to the most generic data type: float.

import torch
x = torch.tensor([[1,2]])
y = torch.tensor([[1],[2]])

print(x.shape, y.shape)
print(x.dtype)

torch.Size([1,2]) torch.Size([2,1])
torch.int64

x = torch.tensor([False, 1, 2.0])
print(x)

tensor([0., 1., 2.])

Initializing a tensor

■ Just like Numpy and usually with the same command names, we can initialize tensors
with built-in functions. For example, in the following example different tensors of size 3×4
are created using these functions:

■ Finally, one can convert a Numpy array into a Pytorch tensor and vice-versa:

t1 = torch.zeros((3, 4)) # tensor of zeros
t2 = torch.ones((3, 4)) # tensor of ones
t3 = torch.randint(low=0, high=10, size=(3,4)) # tensor of random integers between 0 and 10
t4 = torch.rand(3, 4) # tensor of random floats 0 and 1
t5 = torch.randn((3,4)) # tensor of random floats normally distributed

x = np.array([[10,20,30],[2,3,4]])
y = torch.tensor(x)
z = y.numpy()
print(type(x), type(y), type(z))

<class 'numpy.ndarray'> <class 'torch.Tensor'> <class 'numpy.ndarray'>

Operations in tensors

■ There are many useful operations we can do with tensors, most of them similar to how
Numpy works:
● Addition and multiplication by a scalar:

● Matrix transposition and multiplication (example below uses x from above):

● Indexing and concatenation (example below uses x from above):

x = torch.tensor([[1,2,3,4],
 [5,6,7,8]])
print(x + x)
print(x * 10)

tensor([[2, 4, 6, 8],
 [10, 12, 14, 16]])
tensor([[10, 20, 30, 40],
 [50, 60, 70, 80]])

print(torch.matmul(x, x.T)) # or x @ x.T tensor([[30, 70],
 [70, 174]])

y = torch.tensor([9, 10, 11, 12])
print(torch.cat([x[1, :], y], axis = 0))

tensor([5, 6, 7, 8, 9, 10, 11, 12])

Operations in tensors

● Tensor reshaping:

● Maximum value and index:

● Standard mathematical operations: abs, floor, sin, cos, exp, mean, round…

y = torch.tensor([[2, 3], [1, 0]])
z = y.view(4,1) # 4 rows and 1 column
w = y.view(-1,4) # The other dimension is inferred if using “-1”
print(z)
print(w)

tensor([[2],
 [3],
 [1],
 [0]])
tensor([[2, 3, 1, 0]])

x = torch.arange(16).view(4,4)
print(x)
print(x.max()) # Maximum over the whole tensor

vals, indx = x.max(dim=1) # Maximum over each row
print(vals)
print(indx) # We could use “argmax()” to get just the indices

tensor([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
tensor(15)
tensor([3, 7, 11, 15])
tensor([3, 3, 3, 3])

Gradients with Autograd

■ One of the main operations in PyTorch is to compute the gradients of a tensor object.
■ It uses a technique called Automatic Differentiation (Autograd), which enables us to do

it by evaluating the derivative of a function specified by a computer program.
■ In PyTorch, the way we to use it starts by specifying that a tensor requires a gradient to

be calculated via the parameter requires_grad:

■ Say you have the following function of x = [x1, x2]:

which can be computed in PyTorch as:

x = torch.tensor([2., -1.], requires_grad=True)

f = x.pow(2).sum()

Gradients with Autograd

■ Now, we know that the gradient of f is [2x1, 2x2].
■ We get this in PyTorch by first using the (very important) function backward():

(As the name of it hints at, backward() is where the backpropagation in NN happens).
■ Now we compute the gradient of f at the point x from the previous slide with x.grad:

■ There’s one catch with PyTorch autograd: the function you want to compute the gradient
of should return a scalar. Loss functions fit in that category.

f.backward()

ans = x.grad
print(ans)

tensor([4., -2.])

■ Despite the similarities, PyTorch performs certain
mathematical operations more quickly than
Numpy.

■ This is mainly due to the fact that PyTorch tensor
is optimized to work with a Graphics Processing
Unit (GPU), instead of a Central Processing Unit
(CPU), although they also work in CPUs.

■ GPUs make parallelizable operations (such as
matrix multiplication) much quicker, because of
the sheer amount of computational cores it has
available (between 700 and 9000).

■ A usual CPU (which, in general, have less than
64 cores) would be much slower than a GPU.

PyTorch's tensors vs NumPy's arrays

Number of cores per GPU model

■ Let’s check that with an experiment. Create random matrices with PyTorch and Numpy:

■ Then check if CUDA (a parallel computing platform) is available to be used.

■ We can store our PyTorch tensors in the GPU (if it is available) with .to(device), and in
the CPU (with .cpu()) and compare their performances with regular Numpy:

PyTorch's tensors vs NumPy's arrays

x_t, y_t = torch.rand(1, 6400), torch.rand(6400, 5000)
x_n, y_n = np.random.random((1, 6400)), np.random.random((6400, 5000))

device = 'cuda' if torch.cuda.is_available() else 'cpu' # If CUDA isn’t available, we use the CPU.

x, y = x_t.to(device), y_t.to(device)
%timeit z = x@y

100 loops: 515 µs per loop

x, y = x_t.cpu(), y_t.cpu()
%timeit z = x@y

100 loops: 9.04 ms per loop

%timeit z = np.matmul(x_n,y_n)

100 loops: 18.8 ms per loop

Our First Neural Network: Dataset

-2 -1 1 2

2

1

-1

-2

Legend

Train

Test

■ Now we are ready to build and train our first
neural network in PyTorch!

■ We’ll first instantiate the training data on the
right with what we saw so far:

x_train = [[-2,-1], [-1,-1], [-1,-2],
 [2,-1], [1,-1], [1,-2],
 [2,1], [1,1], [1,2]]
y_train = [[1, 0, 0], [1, 0, 0], [1, 0, 0],
 [0, 1, 0], [0, 1, 0], [0, 1, 0],
 [0, 0, 1], [0, 0, 1], [0, 0, 1]]

X_train = torch.tensor(x_train).float()
Y_train = torch.tensor(y_train).float()

device = 'cuda' if torch.cuda.is_available() else 'cpu'
X_train = X_train.to(device)
Y_train = Y_train.to(device)

Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:

import torch.nn as nn
class MyNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(2,4)
 self.hidden_layer_activation = nn.ReLU()
 self.hidden_to_output_layer = nn.Linear(4,3)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x

x1

x2

1

h1

h2 ŷ2

ŷ3

1

h3

ŷ1

h4

Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:

import torch.nn as nn
class MyNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(2,4)
 self.hidden_layer_activation = nn.ReLU()
 self.hidden_to_output_layer = nn.Linear(4,3)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x

In the constructor, you
should declare the
layers and functions
you need.

In forward(), you
explain how the layer
would be composed
such that to transform
the network input x
into the output in
return.

x1

x2

1

h1

h2 ŷ2

ŷ3

1

h3

ŷ1

h4

Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:

import torch.nn as nn
class MyNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(2,4)
 self.hidden_layer_activation = nn.ReLU()
 self.hidden_to_output_layer = nn.Linear(4,3)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x

Notice: no softmax!

A Linear layer is
the type of layer
that connects all
layer inputs to all
layer outputs.
Notice that you
have to specify
how many inputs
and outputs.

x1

x2

1

h1

h2 ŷ2

ŷ3

1

h3

ŷ1

h4

Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:

import torch.nn as nn
class MyNeuralNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.input_to_hidden_layer = nn.Linear(2,4)
 self.hidden_layer_activation = nn.ReLU()
 self.hidden_to_output_layer = nn.Linear(4,3)
 def forward(self, x):
 x = self.input_to_hidden_layer(x)
 x = self.hidden_layer_activation(x)
 x = self.hidden_to_output_layer(x)
 return x

x1

x2

1

h1

h2 ŷ2

ŷ3

1

h3

ŷ1

h4

Our First Neural Network: Optimizer and Loss

■ The next step is to instantiate a network of the class MyNeuralNet:

Here we also register the network weights (which are tensors) to the device.
■ Then we need to define the loss function that we optimize for. Since we have three

classes, we’ll use Cross Entropy, which can be used in PyTorch as:

(again, this loss also computes the softmax operation to its inputs).
■ Finally, we define our optimizer. For now, let’s use our simplest option: Stochastic

Gradient Descent (SGD).

loss_func = nn.CrossEntropyLoss()

from torch.optim import SGD
opt = SGD(mynet.parameters(), lr = 0.001) # “lr” is the learning rate.

mynet = MyNeuralNet().to(device)

Our First Neural Network: Training!

■ Good! Now, we are ready to train our network on our dataset!
■ For now, we will not consider mini-batches, so we’ll use all the data to compute one step

in gradient descent.
■ When training a network in PyTorch, we have to go over 4 main steps in a for loop:

1. Zero the gradients saved in the optimizer: PyTorch accumulates them by default.
2. Compute the loss for current set of data: the current data is the whole dataset for now.
3. Compute the new gradients: this operation is done via the AutoGrad’s backward() .
4. Make a gradient descent step: this operation is done via opt.step() .

■ Then we repeat it for a given amount of epochs. Here’s how it looks like:

n_epochs = 1000
for _ in range(n_epochs):
 opt.zero_grad() # flush the previous epoch's gradients
 loss_value = loss_func(mynet(X_train),Y_train) # compute loss
 loss_value.backward() # perform back-propagation
 opt.step() # update the weights according to the gradients computed

Our First Neural Network: Training!

■ How well we are doing during training? We can track the loss value over the epochs …

… and plot it using Matplotlib:

n_epochs = 1000
loss_history = []
for _ in range(n_epochs):
 opt.zero_grad()
 loss_value = loss_func(mynet(X_train),Y_train)
 loss_value.backward()
 opt.step()

 loss_history.append(loss_value.detach().cpu().numpy())

import matplotlib.pyplot as plt
plt.plot(loss_history)
plt.title('Loss variation')
plt.xlabel('epochs')
plt.ylabel('loss value')

Why is it so complicated? We just want a
number! Well, loss_value is a tensor on the
GPU that can be used to compute gradients. We
need to remove all that to get the loss value (a
number). So we do:

● detach() removes requires_grad.
● cpu() moves the tensor to the cpu.
● numpy() converts the tensor to an array.

■ We can use mynet.parameters() to check what weights we’ve learned after training:

Our First Neural Network: Checking Parameters

for par in mynet.parameters():
 print(par)

Parameter containing:
tensor([[0.0207, 0.6736],
 [-0.6257, -0.1910],
 [0.1345, 0.4238],
 [-0.0057, -0.0278]], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([0.3481, -0.5513, -0.5184, -0.0614], device='cuda:0',
 requires_grad=True)
Parameter containing:
tensor([[-0.3208, -0.1217, 0.3756, -0.0855],
 [-0.0237, -0.1747, -0.2482, -0.2043],
 [0.0442, -0.1720, -0.3428, 0.2704]], device='cuda:0',
 requires_grad=True)
Parameter containing:
tensor([-0.3330, -0.0685, -0.2763], device='cuda:0', requires_grad=True)

■ We can use mynet.parameters() to check what weights we’ve learned after training:

Our First Neural Network: Checking Parameters

for par in mynet.parameters():
 print(par)

Parameter containing:
tensor([[0.0207, 0.6736],
 [-0.6257, -0.1910],
 [0.1345, 0.4238],
 [-0.0057, -0.0278]], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([0.3481, -0.5513, -0.5184, -0.0614], device='cuda:0',
 requires_grad=True)
Parameter containing:
tensor([[-0.3208, -0.1217, 0.3756, -0.0855],
 [-0.0237, -0.1747, -0.2482, -0.2043],
 [0.0442, -0.1720, -0.3428, 0.2704]], device='cuda:0',
 requires_grad=True)
Parameter containing:
tensor([-0.3330, -0.0685, -0.2763], device='cuda:0', requires_grad=True)

Weights from the input layer
to the hidden layer.

Biases on the input layer.

Weights from the hidden layer
to the output layer.

Biases on the hidden layer.

Our First Neural Network: Testing!

■ Let’s test how our network performs on the test data. First, let’s get the test data:

■ Now, we simply need to feed the test data to the network and get the predictions:

Note that we don’t get the softmax’s probabilities as we never added that layer in. This is
okay, since our final predictions are the indices where the max prediction occur*.

■ In this run, we didn’t get all points correctly classified. How can we improve?

x_test = [[-2,-2], [2,-2], [2,2]]
y_test = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # This means that the test labels are [0, 1, 2]

X_test, Y_test = torch.tensor(x_test).float().to(device), torch.tensor(y_test).float().to(device)

Y_pred = mynet(X_test)
print(Y_pred.cpu().detach().numpy())
print(torch.argmax(Y_pred, dim=1).cpu().numpy())

[[0.69065624 0.26163384 0.29026318]
 [-0.01491237 0.0594516 0.10389088]
 [0.13534957 0.03114225 0.16994081]]
[0 2 2]

* If you want the softmaxes anyway, you first define the softmax function as softmax = nn.Softmax() and the apply it to Y_pred.

.

Exercise (In pairs)

■ Change the previous experiment by the following ways:
● Keeping the same network as before, increase the number of epochs.
● Keeping the one hidden layers and number of epochs, add more units to it.
● Keeping the same number of units per layer and number of epochs, increase the number of

hidden layers.

■ Graph the loss variation of epochs on those experiments.
■ Create an MLP that learns to classify the data in this dataset (from a few lectures ago):

Train the network on you training data and test it on your test data. Add an accuracy()
function that computes final classification accuracy. You’ll need to use the function
torch.nn.functional.one_hot() from Pytorch (More on it here).

Click here to open code in Colab

from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
x, y = make_blobs(n_samples=400, centers=4, cluster_std=2, random_state=10)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)

https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html
https://colab.research.google.com/drive/1LnBrsNbr_NydM9cbfBpA6Uroxpi-IQjX?ouid=111909708776057753574&usp=drive_link
https://colab.research.google.com/drive/1LnBrsNbr_NydM9cbfBpA6Uroxpi-IQjX?ouid=111909708776057753574&usp=drive_link

Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

