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PyTorch

■ After we learned all this previous theory on Deep Learning, it is finally time to 
implement it and solve real problem.

■ To that goal, we’ll use a Python library called PyTorch, which provides many more 
features, and it is much more optimized for Deep Learning development than 
Scikit-learn, which we used previously. 

■ Created in 2016 by Facebook, PyTorch has become the de facto library for DL in many 
industries and most of the Artificial Intelligence research is done with it nowadays. 



■ The main data structure used in PyTorch is a tensor, which is a generalization of vectors 
and matrices:

■ We can create tensors / arrays of more dimensions (4, 5, …) following the same principle.
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Initializing a tensor

■  We initialize a tensor by calling torch.tensor() on a list of numerical elements:

■ Just like in Numpy, we can access the tensors’ shapes and data types:

■ The data type of all elements within a tensor is the same! If a tensor contains data of 
different data types, entire tensor is coerced to the most generic data type: float.

import torch
x = torch.tensor([[1,2]])
y = torch.tensor([[1],[2]])

print(x.shape, y.shape)
print(x.dtype)

torch.Size([1,2]) torch.Size([2,1]) 
torch.int64

x = torch.tensor([False, 1, 2.0])
print(x)

tensor([0., 1., 2.])



Initializing a tensor

■ Just like Numpy and usually with the same command names, we can initialize tensors 
with built-in functions. For example, in the following example different tensors of size 3×4 
are created using these functions:

■ Finally, one can convert a Numpy array into a Pytorch tensor and vice-versa:

t1 = torch.zeros((3, 4))     # tensor of zeros
t2 = torch.ones((3, 4))      # tensor of ones
t3 = torch.randint(low=0, high=10, size=(3,4)) # tensor of random integers between 0 and 10
t4 = torch.rand(3, 4)        # tensor of random floats 0 and 1
t5 = torch.randn((3,4))      # tensor of random floats normally distributed

x = np.array([[10,20,30],[2,3,4]])
y = torch.tensor(x)
z = y.numpy()
print(type(x), type(y), type(z))

<class 'numpy.ndarray'> <class 'torch.Tensor'> <class 'numpy.ndarray'>



Operations in tensors

■ There are many useful operations we can do with tensors, most of them similar to how 
Numpy works:
● Addition and multiplication by a scalar:

● Matrix transposition and multiplication (example below uses x from above):

● Indexing and concatenation (example below uses x from above):

x = torch.tensor([[1,2,3,4],
                  [5,6,7,8]])
print(x + x)
print(x * 10) 

tensor([[ 2,  4,  6,  8],
        [10, 12, 14, 16]])
tensor([[10, 20, 30, 40],
        [50, 60, 70, 80]])

print(torch.matmul(x, x.T)) # or x @ x.T tensor([[ 30,  70],
        [ 70, 174]])

y = torch.tensor([9, 10, 11, 12])
print(torch.cat([x[1, :], y], axis = 0))

tensor([ 5,  6,  7,  8,  9, 10, 11, 12])



Operations in tensors

● Tensor reshaping:

● Maximum value and index:

● Standard mathematical operations: abs, floor, sin, cos, exp, mean, round…

y = torch.tensor([[2, 3], [1, 0]])
z = y.view(4,1)  # 4 rows and 1 column
w = y.view(-1,4) # The other dimension is inferred if using “-1”
print(z)
print(w)

tensor([[2],
        [3],
        [1],
        [0]])
tensor([[2, 3, 1, 0]])

x = torch.arange(16).view(4,4)
print(x)
print(x.max()) # Maximum over the whole tensor

vals, indx = x.max(dim=1) # Maximum over each row
print(vals)
print(indx) # We could use “argmax()” to get just the indices

tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15]])
tensor(15)
tensor([ 3,  7, 11, 15])
tensor([3, 3, 3, 3])



Gradients with Autograd

■ One of the main operations in PyTorch is to compute the gradients of a tensor object.
■ It uses a technique called Automatic Differentiation (Autograd), which enables us to do 

it by evaluating the derivative of a function specified by a computer program.
■ In PyTorch, the way we to use it starts by specifying that a tensor requires a gradient to 

be calculated via the parameter requires_grad:

■ Say you have the following function of x = [x1, x2]:

which can be computed in PyTorch as:

x = torch.tensor([2., -1.], requires_grad=True)

f = x.pow(2).sum()



Gradients with Autograd

■ Now, we know that the gradient of f is [2x1, 2x2]. 
■ We get this in PyTorch by first using the (very important) function backward():

(As the name of it hints at, backward() is where the backpropagation in NN happens).
■ Now we compute the gradient of f at the point x from the previous slide with x.grad:

■ There’s one catch with PyTorch autograd: the function you want to compute the gradient 
of should return a scalar. Loss functions fit in that category.

f.backward()

ans = x.grad
print(ans)

tensor([ 4., -2.])



■ Despite the similarities, PyTorch performs certain 
mathematical operations more quickly than 
Numpy.

■ This is mainly due to the fact that PyTorch tensor 
is optimized to work with a Graphics Processing 
Unit (GPU), instead of a Central Processing Unit 
(CPU), although they also work in CPUs.

■ GPUs make parallelizable operations (such as 
matrix multiplication) much quicker, because of 
the sheer amount of computational cores it has 
available (between 700 and 9000).

■ A usual CPU (which, in general, have less than 
64 cores) would be much slower than a GPU.

PyTorch's tensors vs NumPy's arrays

Number of cores per GPU model



■ Let’s check that with an experiment. Create random matrices with PyTorch and Numpy:

■ Then check if CUDA (a parallel computing platform) is available to be used. 

■ We can store our PyTorch tensors in the GPU (if it is available) with .to(device), and in 
the CPU (with .cpu()) and compare their performances with regular Numpy:

PyTorch's tensors vs NumPy's arrays

x_t, y_t = torch.rand(1, 6400), torch.rand(6400, 5000)
x_n, y_n = np.random.random((1, 6400)),  np.random.random((6400, 5000))

device = 'cuda' if torch.cuda.is_available() else 'cpu'     # If CUDA isn’t available, we use the CPU.

x, y = x_t.to(device), y_t.to(device)
%timeit z = x@y

100 loops: 515 µs per loop

x, y = x_t.cpu(), y_t.cpu()
%timeit z = x@y

100 loops: 9.04 ms per loop

%timeit z = np.matmul(x_n,y_n)

100 loops: 18.8 ms per loop



Our First Neural Network: Dataset
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■ Now we are ready to build and train our first 
neural network in PyTorch!

■ We’ll first instantiate the training data on the 
right with what we saw so far:

x_train = [[-2,-1], [-1,-1], [-1,-2],
           [2,-1],  [1,-1],  [1,-2],
           [2,1],   [1,1],   [1,2]]
y_train = [[1, 0, 0], [1, 0, 0], [1, 0, 0],
           [0, 1, 0], [0, 1, 0], [0, 1, 0],
           [0, 0, 1], [0, 0, 1], [0, 0, 1]]

X_train = torch.tensor(x_train).float()
Y_train = torch.tensor(y_train).float()

device = 'cuda' if torch.cuda.is_available() else 'cpu'
X_train = X_train.to(device)
Y_train = Y_train.to(device)



Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:

import torch.nn as nn
class MyNeuralNet(nn.Module):
   def __init__(self):
       super().__init__()
       self.input_to_hidden_layer = nn.Linear(2,4)
       self.hidden_layer_activation = nn.ReLU()
       self.hidden_to_output_layer = nn.Linear(4,3)
   def forward(self, x):
       x = self.input_to_hidden_layer(x)
       x = self.hidden_layer_activation(x)
       x = self.hidden_to_output_layer(x)
       return x
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In the constructor, you 
should declare the 
layers and functions 
you need.

In forward(), you 
explain how the layer 
would be composed 
such that to transform 
the network input x 
into the output in 
return.
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Our First Neural Network: Architecture

■ Let’s define our network. For simplicity, we’d like a network with
● One hidden layer with four units (shown below),
● ReLU activation functions between the hidden and the output layer.

■ In Torch, we have to create a class for our network that inherits torch’s nn.Module.
■ That class should implement the constructor and forward() methods:
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Notice: no softmax!

A Linear layer is 
the type of layer 
that connects all 
layer inputs to all 
layer outputs. 
Notice that you 
have to specify 
how many inputs 
and outputs. 
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Our First Neural Network: Optimizer and Loss

■ The next step is to instantiate a network of the class MyNeuralNet:

Here we also register the network weights (which are tensors) to the device.
■ Then we need to define the loss function that we optimize for. Since we have three 

classes, we’ll use Cross Entropy, which can be used in PyTorch as:

(again, this loss also computes the softmax operation to its inputs).
■ Finally, we define our optimizer. For now, let’s use our simplest option: Stochastic 

Gradient Descent (SGD).

loss_func = nn.CrossEntropyLoss()

from torch.optim import SGD
opt = SGD(mynet.parameters(), lr = 0.001) # “lr” is the learning rate.

mynet = MyNeuralNet().to(device)



Our First Neural Network: Training!

■ Good! Now, we are ready to train our network on our dataset! 
■ For now, we will not consider mini-batches, so we’ll use all the data to compute one step 

in gradient descent.
■ When training a network in PyTorch, we have to go over 4 main steps in a for loop:

1. Zero the gradients saved in the optimizer: PyTorch accumulates them by default.
2. Compute the loss for current set of data: the current data is the whole dataset for now.
3. Compute the new gradients: this operation is done via the AutoGrad’s backward() .
4. Make a gradient descent step: this operation is done via opt.step() .

■ Then we repeat it for a given amount of epochs. Here’s how it looks like:

n_epochs = 1000
for _ in range(n_epochs):
   opt.zero_grad()       # flush the previous epoch's gradients
   loss_value = loss_func(mynet(X_train),Y_train) # compute loss
   loss_value.backward()  # perform back-propagation
   opt.step() # update the weights according to the gradients computed



Our First Neural Network: Training!

■ How well we are doing during training? We can track the loss value over the epochs …

… and plot it using Matplotlib:

n_epochs = 1000
loss_history = []
for _ in range(n_epochs):
   opt.zero_grad()
   loss_value = loss_func(mynet(X_train),Y_train)
   loss_value.backward()
   opt.step()

   loss_history.append(loss_value.detach().cpu().numpy())

import matplotlib.pyplot as plt
plt.plot(loss_history)
plt.title('Loss variation')
plt.xlabel('epochs')
plt.ylabel('loss value')

Why is it so complicated? We just want a 
number! Well, loss_value is a tensor on the 
GPU that can be used to compute gradients. We 
need to remove all that to get the loss value (a 
number). So we do:

● detach() removes requires_grad.
● cpu() moves the tensor to the cpu.
● numpy() converts the tensor to an array.



■ We can use mynet.parameters() to check what weights we’ve learned after training:

Our First Neural Network: Checking Parameters

for par in mynet.parameters():
   print(par)

Parameter containing:
tensor([[ 0.0207,  0.6736],
    [-0.6257, -0.1910],
    [ 0.1345,  0.4238],
    [-0.0057, -0.0278]], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([ 0.3481, -0.5513, -0.5184, -0.0614], device='cuda:0',
   requires_grad=True)
Parameter containing:
tensor([[-0.3208, -0.1217,  0.3756, -0.0855],
    [-0.0237, -0.1747, -0.2482, -0.2043],
    [ 0.0442, -0.1720, -0.3428,  0.2704]], device='cuda:0',
   requires_grad=True)
Parameter containing:
tensor([-0.3330, -0.0685, -0.2763], device='cuda:0', requires_grad=True)



■ We can use mynet.parameters() to check what weights we’ve learned after training:

Our First Neural Network: Checking Parameters

for par in mynet.parameters():
   print(par)

Parameter containing:
tensor([[ 0.0207,  0.6736],
    [-0.6257, -0.1910],
    [ 0.1345,  0.4238],
    [-0.0057, -0.0278]], device='cuda:0', requires_grad=True)
Parameter containing:
tensor([ 0.3481, -0.5513, -0.5184, -0.0614], device='cuda:0',
   requires_grad=True)
Parameter containing:
tensor([[-0.3208, -0.1217,  0.3756, -0.0855],
    [-0.0237, -0.1747, -0.2482, -0.2043],
    [ 0.0442, -0.1720, -0.3428,  0.2704]], device='cuda:0',
   requires_grad=True)
Parameter containing:
tensor([-0.3330, -0.0685, -0.2763], device='cuda:0', requires_grad=True)

Weights from the input layer 
to the hidden layer. 

Biases on the input layer.

Weights from the hidden layer 
to the output layer.  

Biases on the hidden layer.



Our First Neural Network: Testing!

■ Let’s test how our network performs on the test data. First, let’s get the test data:

■ Now, we simply need to feed the test data to the network and get the predictions:

Note that we don’t get the softmax’s probabilities as we never added that layer in. This is 
okay, since our final predictions are the indices where the max prediction occur*. 

■ In this run, we didn’t get all points correctly classified. How can we improve?

x_test = [[-2,-2], [2,-2], [2,2]]
y_test = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # This means that the test labels are [0, 1, 2]

X_test, Y_test = torch.tensor(x_test).float().to(device), torch.tensor(y_test).float().to(device)

Y_pred = mynet(X_test)
print(Y_pred.cpu().detach().numpy())
print(torch.argmax(Y_pred, dim=1).cpu().numpy())

[[ 0.69065624  0.26163384  0.29026318]
 [-0.01491237  0.0594516   0.10389088]
 [ 0.13534957  0.03114225  0.16994081]]
[0 2 2]

* If you want the softmaxes anyway, you first define the softmax function as softmax = nn.Softmax() and the apply it to Y_pred.

.



Exercise (In pairs)

■ Change the previous experiment by the following ways:
● Keeping the same network as before, increase the number of epochs.
● Keeping the one hidden layers and number of epochs, add more units to it.
● Keeping the same number of units per layer and number of epochs, increase the number of 

hidden layers.

■ Graph the loss variation of epochs on those experiments. 
■ Create an MLP that learns to classify the data in this dataset (from a few lectures ago):

Train the network on you training data and test it on your test data. Add an accuracy() 
function that computes final classification accuracy. You’ll need to use the function 
torch.nn.functional.one_hot() from Pytorch (More on it here).

Click here to open code in Colab

from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
x, y = make_blobs(n_samples=400, centers=4, cluster_std=2, random_state=10)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)

https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html
https://colab.research.google.com/drive/1LnBrsNbr_NydM9cbfBpA6Uroxpi-IQjX?ouid=111909708776057753574&usp=drive_link
https://colab.research.google.com/drive/1LnBrsNbr_NydM9cbfBpA6Uroxpi-IQjX?ouid=111909708776057753574&usp=drive_link


Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc



