CS3485 **Deep Learning for Computer Vision**

Lec 5: Pytorch I – MLPs

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

- After we learned all this previous theory on Deep Learning, it is finally time to implement it and solve real problem.
- To that goal, we'll use a Python library called **PyTorch**, which provides many more features, and it is much more optimized for Deep Learning development than Scikit-learn, which we used previously.
- Created in 2016 by Facebook, PyTorch has become the de facto library for DL in many industries and most of the Artificial Intelligence research is done with it nowadays.

■ The main data structure used in PyTorch is a **tensor**, which is a generalization of vectors and matrices:

■ We can create tensors / arrays of more dimensions (4, 5, ...) following the same principle.

Initializing a tensor

■ We initialize a tensor by calling torch.tensor() on a list of numerical elements:

import torch $x =$ torch.tensor($[1, 2]$]) $=$ torch.tensor($[11, 2]$])

■ Just like in Numpy, we can access the tensors' shapes and data types:

■ The data type of all elements within a tensor **is the same**! If a tensor contains data of different data types, entire tensor is coerced to the most generic data type: f loat.

 $x =$ torch.tensor([False, 1, 2.0]) print(x)

tensor([0., 1., 2.])

Initializing a tensor

■ Just like Numpy and usually with the same command names, we can initialize tensors with built-in functions. For example, in the following example different tensors of size *3×4* are created using these functions:

■ Finally, one can convert a Numpy array into a Pytorch tensor and vice-versa:

```
x = np.array([10, 20, 30], [2, 3, 4]])y = torch.tensor(x)
z = v.\text{numpv}()print(type(x), type(y), type(z))
```
<class 'numpy.ndarray'> <class 'torch.Tensor'> <class 'numpy.ndarray'>

Operations in tensors

■ There are many useful operations we can do with tensors, most of them similar to how Numpy works:

Addition and multiplication by a scalar:

Matrix transposition and multiplication (example below uses \times from above):

print(torch.matmul(x, x.T)) # or x @ x.T tensor([[30, 70],

[70, 174]])

• Indexing and concatenation (example below uses \times from above):

 $y =$ torch.tensor($[9, 10, 11, 12]$) print(torch.cat($[x[1, :], y]$, axis = 0)) tensor($\begin{bmatrix} 5, & 6, & 7, & 8, & 9, & 10, & 11, & 12 \end{bmatrix}$)

Operations in tensors

Tensor reshaping:

Maximum value and index:

Standard mathematical operations: abs, floor, sin, cos, exp, mean, round...

Gradients with Autograd

- One of the main operations in PyTorch is to **compute the gradients** of a tensor object.
- It uses a technique called **Automatic Differentiation (Autograd)**, which enables us to do it by evaluating the derivative of a function **specified by a computer program**.
- In PyTorch, the way we to use it starts by specifying that a tensor requires a gradient to be calculated via the parameter requires grad:

 $x =$ torch.tensor($[2., -1.]$, requires grad=True)

■ Say you have the following function of $x = [x_p, x_2]$: $f(x_1, x_2) = x_1^2 + x_2^2$

which can be computed in PyTorch as:

Gradients with Autograd

- \blacksquare Now, we know that the gradient of *f* is $[2x_{p}\,\,2x_{2}]$.
- We get this in PyTorch by first using the (very important) function backward():

f.backward()

(As the name of it hints at, backward() is where the backpropagation in NN happens).

■ Now we compute the gradient of f at the point x from the previous slide with x.grad:

ans $= x.grad$ print(ans)

tensor($\lceil 4., -2. \rceil$)

■ There's one catch with PyTorch autograd: the function you want to compute the gradient of **should return a scalar**. Loss functions fit in that category.

PyTorch's tensors vs NumPy's arrays

- Despite the similarities, PyTorch performs certain mathematical operations more quickly than Numpy.
- This is mainly due to the fact that PyTorch tensor is optimized to work with a **Graphics Processing Unit (GPU)**, instead of a Central Processing Unit (CPU), although they also work in CPUs.
- GPUs make **parallelizable operations** (such as matrix multiplication) much quicker, because of the sheer amount of computational cores it has available (between *700* and *9000*).
- A usual CPU (which, in general, have less than *64* cores) would be much slower than a GPU.

PyTorch's tensors vs NumPy's arrays

■ Let's check that with an experiment. Create random matrices with PyTorch and Numpy:

 x_t , $y_t = \text{torch.randn}(1, 6400)$, $\text{torch.randn}(6400, 5000)$ x n, y n = np.random.random($(1, 6400)$), np.random.random((6400, 5000))

Then check if **CUDA (a parallel computing platform)** is available to be used.

device = 'cuda' if torch.cuda.is available() else 'cpu' # If CUDA isn't available, we use the CPU.

■ We can store our PyTorch tensors in the GPU (if it is available) with to (device), and in the CPU (with .cpu()) and compare their performances with regular Numpy:

Our First Neural Network: Dataset

- Now we are ready to build and train our first neural network in PyTorch!
- We'll first instantiate the training data on the right with what we saw so far:

```
x train = [[-2,-1], [-1,-1], [-1,-2],[2,1], [1,1], [1,2]]
            [0, 0, 1], [0, 0, 1], [0, 0, 1]]
X train = torch.tensor(x train).float()
Y train = torch.tensor(y train).float()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X train = X train.to(device)
Y train = Y train.to(device)
```


■ Let's define our network. For simplicity, we'd like a network with

- **One hidden layer** with **four units** (shown below),
- **ReLU activation functions** between the hidden and the output layer.
- In Torch, we have to create a class for our network that inherits torch's nn.Module.
- That class should implement the constructor and forward() methods:

```
import torch.nn as nn
class MyNeuralNet(nn.Module):
  def __ init (self):
       super(). init ()self.input to hidden layer = nn.Linear(2,4)
       self.hidden layer activation = nn.ReLU()
       self.hidden to output layer = nn.Linear(4,3)
   def forward(self, x):
      x = self.input to hidden layer(x)
      x = self.hidden layer activation(x)x = self.hidden to output layer(x)
```


■ Let's define our network. For simplicity, we'd like a network with

- **One hidden layer** with **four units** (shown below),
- **ReLU activation functions** between the hidden and the output layer.
- In Torch, we have to create a class for our network that inherits torch's nn.Module.
- That class should implement the constructor and forward() methods:

In the constructor, you should declare the layers and functions you need.

In forward(), you explain how the layer would be composed such that to transform the network input \times into the output in return.

■ Let's define our network. For simplicity, we'd like a network with

- **One hidden layer** with **four units** (shown below),
- **ReLU activation functions** between the hidden and the output layer.
- In Torch, we have to create a class for our network that inherits torch's nn.Module.
- That class should implement the constructor and forward() methods:

A Linear layer is the type of layer that connects all layer inputs to all layer outputs. Notice that you have to specify how many inputs and outputs.

Notice: no softmax!

■ Let's define our network. For simplicity, we'd like a network with

- **One hidden layer** with **four units** (shown below),
- **ReLU activation functions** between the hidden and the output layer.
- In Torch, we have to create a class for our network that inherits torch's nn.Module.
- That class should implement the constructor and forward() methods:

Our First Neural Network: Optimizer and Loss

The next step is to instantiate a network of the class MyNeuralNet:

mynet = MyNeuralNet().to(device)

Here we also register the network **weights (which are tensors)** to the device.

■ Then we need to **define the loss function** that we optimize for. Since we have three classes, we'll use Cross Entropy, which can be used in PyTorch as:

loss_func = nn.CrossEntropyLoss()

(again, this loss also computes the softmax operation to its inputs).

■ Finally, we define our optimizer. For now, let's use our simplest option: Stochastic Gradient Descent (SGD).

from torch.optim import SGD $\text{log}t = \text{SGD(mynet.parameters(),} \text{lr} = 0.001) \text{ # "lr" is the learning rate.}$

Our First Neural Network: Training!

- Good! Now, we are ready to train our network on our dataset!
- For now, we will not consider mini-batches, so we'll use all the data to compute one step in gradient descent.
- When training a network in PyTorch, we have to go over 4 main steps in a for loop:
	- 1. **Zero the gradients** saved in the optimizer: PyTorch accumulates them by default.
	- 2. **Compute the loss** for current set of data: the current data is the whole dataset for now.
	- 3. **Compute the new gradients**: this operation is done via the AutoGrad's backward().
	- **4. Make a gradient descent step**: this operation is done via opt. step().
- Then we repeat it for a given amount of epochs. Here's how it looks like:

Our First Neural Network: Training!

How well we are doing during training? We can track the loss value over the epochs ...

… and plot it using Matplotlib:

import matplotlib.pyplot as plt plt.plot(loss_history) plt.title('Loss variation') plt.xlabel('epochs') plt.ylabel('loss value')

Why is it so complicated? We just want a number! Well, loss value is a tensor on the GPU that can be used to compute gradients. We need to remove all that to get the loss value (a number). So we do:

- detach() removes requires grad.
- cpu() moves the tensor to the cpu.
- numpy () converts the tensor to an array.

Our First Neural Network: Checking Parameters

■ We can use mynet.parameters() to check what weights we've learned after training:

for par in mynet.parameters(): print(par)

```
Parameter containing:
tensor([[ 0.0207, 0.6736],
     [-0.6257, -0.1910],
     [ 0.1345, 0.4238],[-0.0057, -0.0278], device='cuda:0', requires grad=True)
Parameter containing:
tensor([ 0.3481, -0.5513, -0.5184, -0.0614], device='cuda:0',
      requires_grad=True)
Parameter containing:
tensor([[-0.3208, -0.1217, 0.3756, -0.0855],
     [-0.0237, -0.1747, -0.2482, -0.2043],[0.0442, -0.1720, -0.3428, 0.2704]], device='cuda:0',
      requires_grad=True)
Parameter containing:
tensor([-0.3330, -0.0685, -0.2763], device='cuda:0', requires grad=True)
```
Our First Neural Network: Checking Parameters

■ We can use mynet.parameters() to check what weights we've learned after training:

Our First Neural Network: Testing!

■ Let's test how our network performs on the test data. First, let's get the test data:

■ Now, we simply need to **feed the test data to the network** and get the predictions:

Note that we don't get the softmax's probabilities as we never added that layer in. This is okay, since our final predictions are the indices where the max prediction occur*.

■ **In this run**, we didn't get all points correctly classified. How can we improve?

* If you want the softmaxes anyway, you first define the softmax function as $\text{softmax} = \text{nn}$. Softmax () and the apply it to Y_pred.

Exercise (*In pairs***)**

Change the previous experiment by the following ways:

[Click here to open code in Colab](https://colab.research.google.com/drive/1LnBrsNbr_NydM9cbfBpA6Uroxpi-IQjX?ouid=111909708776057753574&usp=drive_link) CI

- Keeping the same network as before, increase the number of epochs.
- Keeping the one hidden layers and number of epochs, add more units to it.
- Keeping the same number of units per layer and number of epochs, increase the number of hidden layers.
- Graph the loss variation of epochs on those experiments.
- Create an MLP that learns to classify the data in this dataset (from a few lectures ago):

```
from sklearn.datasets import make_blobs
from sklearn.model selection import train test split
x, y = make blobs(n samples=400, centers=4, cluster std=2, random state=10)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)
```
Train the network on you training data and test it on your test data. Add an accuracy () function that computes final classification accuracy. You'll need to use the function torch.nn.functional.one hot() from Pytorch (More on it [here](https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html)).

*Video***: Go AlphaGo!**

